June 15, 2020

Background: Factor Xa inhibitors have gained more use over the past several years due to the ease of administration and easier monitoring. However, bleeding, namely intracranial hemorrhage (ICH) is still a risk and the lack of a proven antidote is a cause for concern. Guidelines for the treatment of ICH published in 2016 recommended the administration of prothrombin complex concentrates (PCCs, both activated [aPCC] and 4 factor) [2]. In 2018 andexanet alfa gained accelerated approval by the FDA for the reversal of factor Xa inhibitors. Despite this new antidote, many organizations such as the American Society of Hematology and the European Stroke Organization still recommend the use of PCCs.  Research thus far has been performed in healthy volunteers, or small (<100 total patients with ICH) trials leaving a gap in the literature of what agent to use at the bedside.

June 6, 2020

Background: Convalescent plasma therapy is not a new or novel therapeutic option.  It involves taking the plasma from patients who have recovered from an illness and using it to treat patients who currently have the same illness. This approach has been evaluated in the treatment of SARS, MERS, and ebola but, none of the studies in these disease showed definitive results.  Thus far, the amount of evidence on convalescent plasma therapy in COVID-19 is also limited.  There was a case series of 5 patients [2] and a systematic review of 5 trials with 27 patients [3]. Neither study was earth-shattering. However, both showed  improved weaning from mechanical ventilation and no adverse events in the convalescent plasma group.  With a total of 32 patients, we should not put any weight in either of these trials.  We now have our first randomized clinical trial on convalescent plasma therapy.

June 4, 2020

Traditionally, vasopressor infusions have been done through central venous catheters (CVCs) due to the hypothetical risk of extravasation injury to extremities when given through peripheral IVs.  The documented risk of extravasation from peripheral pressors is 3 – 6% [1][3][4][5]. Hypothetically, the extravasation rate can be further reduced.  At Essentials of EM 2020 I gave a short 10-minute talk on 6 pearls I have implemented.  This post will serve as a summary of that talk.

June 2, 2020

Background: We have covered the two previous RCTs on remdesivir on REBEL EM (RCT #1 and RCT #2). In the first trial by Wang et al [2], there was no statically significant improvement in clinical outcomes, but, there were trends toward shorter duration of illness. In the ACTT-1 preliminary report [3], despite all the methodological issues, there was a 4 day decrease in clinical improvement (although not in patients requiring HFNC/NIV/IMV/ECMO).  Neither trial was perfect, however in the middle of pandemic, a several day decrease in recovery time may be beneficial in reducing hospital crowding if the difference holds true in subsequent studies and if the correct target population is known.  We now have our 3rd RCT on remdesivir [1], just published in the NEJM comparing 5 days vs 10 days of remdesivir in patients with severe COVID-19.

May 31, 2020

I am fortunate to work in a hospital system that is very forward thinking.  We have a phenomenal relationship with our intensivists, and I have been fortunate enough to have several discussions with them about how we are managing COVID-19 in our ICUs.  For full transparency, I don’t work up in the ICU, but had the opportunity to discuss what we are doing in our ICUs with one of our intensivists (ECMO, steroids, Remdesivir, etc...).  We are doing something different in San Antonio that I thought was worth discussing on this podcast that may be a feasible option for some institutions and some patients, but not all. If there is one thing this disease has taught me, that is one size does not fit all.