July 2, 2018

Refractory HypoxemiaNow maybe you have intubated a patient secondary to hypoxemic respiratory failure who is at high risk for the development of acute respiratory distress syndrome (ARDS). These patients, and really all patients, with exception of severe obstructive disease, I set up the ventilator to deliver 6mL/kg based on ideal body weight (not actual weight). Regardless if this is a pediatric or adult patient, I am setting up the ventilator to target 6 mL/kg of IBW. I can accomplish this with either pressure mode, where you set the pressure, but closely monitor the tidal volumes the patient is receiving.

June 22, 2018

Obstructive Physiology: Setting up the ventilator for a patient with severe obstructive physiology like asthma or COPD is almost a completely opposite strategy compared to the patient with severe metabolic acidosis. They both have problems with ventilation (removal of carbon dioxide), but for the patient with obstructive disease it takes a very long time to expire due to inflammation and bronchoconstriction.  Instead of setting a high respiratory rate to blow off more CO2 like our severe metabolic acidosis patient, here, you want to set a low respiratory rate to give your patient time to empty more effectively.

June 18, 2018

Before I set up the ventilator, I consider if my patient has one of the following 3 physiologic processes: severe metabolic acidosis, an obstructive process (Asthma or COPD), or refractory hypoxemia. If my patient doesn't fit into one of these 3 categories then I will default to placing them in the refractory hypoxemia category (Part 5), which is simply a lung protective strategy that will be appropriate for patients. In this part we will discuss setting up your ventilator for the patient with a severe metabolic acidosis.

May 18, 2018

In part 1, we discussed that the ventilator can deliver 3 types of breaths: controlled, assisted or spontaneous breaths. These breaths can be delivered either by a set pressure or a set tidal volume. Then we closed with a discussion of the common ventilator modes, which is simply just combining all these types of breaths together. There are many aspects to consider in post-intubation management such as hemodynamic variations, analgesia & sedation, confirmation of the correct position of your endotracheal tube, and setting up the ventilator based on your patients physiology. Too often physicians pay little or no attention to how our amazing respiratory therapists set up the ventilator. Respiratory therapists have expertise in setting up, weaning and trouble-shooting the ventilator, but clinicians need to communicate important clinical physiologic information and their goals for their patient on mechanical ventilation. If you don't feel comfortable setting up the ventilator at this point you at the very least need to communicate with your respiratory therapist when the ventilator is being set up.

May 18, 2018

In part 1, we discussed that the ventilator can deliver 3 types of breaths: controlled, assisted or spontaneous breaths. These breaths can be delivered either by a set pressure or a set tidal volume. Then we closed with a discussion of the common ventilator modes, which is simply just combining all these types of breaths together. There are many aspects to consider in post-intubation management such as hemodynamic variations, analgesia & sedation, confirmation of the correct position of your endotracheal tube, and setting up the ventilator based on your patients physiology. Too often physicians pay little or no attention to how our amazing respiratory therapists set up the ventilator. Respiratory therapists have expertise in setting up, weaning and trouble-shooting the ventilator, but clinicians need to communicate important clinical physiologic information and their goals for their patient on mechanical ventilation. If you don't feel comfortable setting up the ventilator at this point you at the very least need to communicate with your respiratory therapist when the ventilator is being set up.