October 7, 2019

Shock is defined as circulatory failure leading to decreased organ perfusion.  In a shock state there is an inadequate delivery of oxygenated blood to tissues that results in end-organ dysfunction.  Effective resuscitation includes rapid identification and correction of inadequate circulation.  the finding of normal hemodynamic parameters (i.e. normal blood pressure) doe not exclude shock itself.  In this 15 minute and 46 second video, I will review the management shock - part 2a (Norepinephrine, Epinephrine, Dopamine, Phenylephrine, and Push-Dose Pressors).

September 26, 2019

Background Information: Critical care and emergency medicine are frequently intertwined as the resuscitation of critically ill patients occurs in both environments. While the majority of these patients come through the emergency department (ED), the resuscitation of critically ill patients is not defined by a geographic location, but rather a set of principles designed to deliver appropriate care in a timely fashion.1,2 Increased numbers of critically ill patients in combination with decreased availability of intensive care unit (ICU) beds and a shortage of intensivists has led to a shift in critical care being delivered in the ED.3 Furthermore the lack of ICU beds, among many other factors, have contributed to a prolonged length of stay (LOS) of already admitted patients known as “ED Boarding”. Another factor to consider, is that providing prolonged critical care in a traditional ED setting is challenging as it requires more staff and is often associated with increased mortality. Multiple studies have demonstrated an association of worsened outcomes when patient’s ED LOS is greater than 6 hours and, in the United States, 33% of all ICU admissions from the ED have an ED LOS greater than 6 hours.1,4 A proposed solution has been the development of ICUs housed within the ED known as ED-ICUs. While only a handful exist, this new method of care delivery aims to reduce the time it takes for patients to receive critical care and offset the strain on current ICUs (Table 1)4. The authors of this study sought to determine the association of ED-ICUs on 30-day mortality and inpatient ICU admission.

September 19, 2019

Shock is defined as circulatory failure leading to decreased organ perfusion.  In a shock state there is an inadequate delivery of oxygenated blood to tissues that results in end-organ dysfunction.  Effective resuscitation includes rapid identification and correction of inadequate circulation.  the finding of normal hemodynamic parameters (i.e. normal blood pressure) doe not exclude shock itself.  In this 11 minute and 40 second video, I will review the management shock - part 1 (The goals of shock management, signs of adequate organ perfusion, the etiology of shock, and some basic terminology).

September 16, 2019

Background: Rapid sequence intubation (RSI) involves the use of an induction agent followed by a neuromuscular blocking (NMB) agent to obtain optimal intubating conditions.  Administration of a NMB results in apnea which, in turn, can lead to oxygen desaturation.  Oxygen desaturation during rapid sequence intubation may lead to serious adverse events including dysrhythmias, hypotension, and cardiac arrest.  Preoxygenation helps extend the duration of safe apnea and has 2 major goals:
  1. Attempt to achieve an O2 saturation of 100%
  2. Maximize oxygen storage in the lungs by denitrogenation of the residual capacity of the lungs (Approximately 95% of oxygen reservoir)
Preoxygenation is assessed in the ED but usually through pulse oximetry which is inadequate.  In the operating room, anesthesiolgists use gas analyzers to quantify and optimize preoxygenation with ETO2.  In critically ill patients, preoxygenation should be performed to achieve an ETO2 ≥85% based on the response to the 4th National Audit Project of the Royal College of Anaesthetists and Difficult Airway Society [2].

September 9, 2019

Background: Epinephrine (adrenaline) has been used in advanced life support in cardiac arrest since the early 1960s. Despite the routine recommendation for its use, evidence to support administration is less than ideal.  Although it is clear from multiple observational studies that epinephrine improves return of spontaneous circulation (ROSC) and short-term survival, most evidence suggests an absence of improvements in survival with good neurologic outcomes.  In cardiac arrest we want to take advantage of the alpha effects of epinephrine, including peripheral vasoconstriction, and therefore increasing aortic diastolic pressure, which in turn helps augment coronary and cerebral blood flow.  On the other hand, we want to avoid the potentially detrimental beta effects including dysrhythmias, decreased microcirculation, and increased myocardial oxygen demand all of which increase the chances of recurrent cardiac arrest and decreased neurologic recovery.  The only two interventions in cardiac arrest that have shown improve survival with good neurologic outcomes continue to be high-quality CPR and early defibrillation. The debate over the utility of epinephrine in OHCA has been ongoing for several years now and many providers are left with the ultimate question of what to do with epinephrine in OHCA.