February 6, 2020

Background Information: The administration of alteplase (tPA) in acute ischemic stroke (AIS) continues to remain a highly debated topic. As hospital systems continue to undergo major changes to facilitate this controversial drug’s administration, more studies are coming out focusing on neuroimaging and how it plays a role in the time window of AIS. The WAKE-UP trial was one of the first studies to identify MRI patterns suggestive of a stroke in patient whose onset time was unknown.1,2 Over the past 10+ years, other studies have also attempted to identify the role of advanced neuroimaging guiding tPA administration for improved functional outcomes. The authors conducted a meta-analysis to test the hypothesis that tPA improves functional outcomes compared with placebo 4.5 - 9 hours after onset in AIS patients who received advanced neuroimaging. Before getting into the study, we need to better understand the terminology and different types of neuroimaging modalities available and how they play a role in strokes.

November 18, 2019

Background Information: Therapeutic hypothermia is the use of targeted temperature management to reduce neurologic sequelae resulting from the severe ischemia-reperfusion injury that occurs during cardiac arrest primarily from shockable rhythms.1 Although a mainstay treatment in the Advanced Cardiac Life Support (ACLS) guidelines, its use has been widely debated as beneficial in improving neurologic outcomes in post-cardiac arrest patients with non-shockable rhythms.2-7 Recent studies have also questioned the exact temperature at which patients should be cooled.8 The authors of this study sought to assess whether moderate therapeutic hypothermia, compared with targeted normothermia would improve neurologic outcomes in post-cardiac arrest patients who had a non-shockable rhythm.

October 21, 2019

Background Information: Atrial fibrillation is the most commonly encountered dysrhythmia in the emergency department (ED) and is associated with an increased long-term risk of stroke, heart-failure and all-cause mortality.1,2 In fact, the overall mortality rate for patients with atrial fibrillation is approximately double that of patients in normal sinus.3,4 The decision to rate vs. rhythm control patients while in the emergency department remains controversial in the literature and the method of doing so using chemical vs. electrical cardioversion also stirs up debate. Prior studies have shown the success rate of electrical cardioversion alone to be 90%.1,5 other studies have demonstrated that emergency physicians use each strategy roughly half the time.1 The authors of this study sought to determine if one of the two strategies resulted in achievement of normal sinus rhythm and discharge more quickly.

September 26, 2019

Background Information: Critical care and emergency medicine are frequently intertwined as the resuscitation of critically ill patients occurs in both environments. While the majority of these patients come through the emergency department (ED), the resuscitation of critically ill patients is not defined by a geographic location, but rather a set of principles designed to deliver appropriate care in a timely fashion.1,2 Increased numbers of critically ill patients in combination with decreased availability of intensive care unit (ICU) beds and a shortage of intensivists has led to a shift in critical care being delivered in the ED.3 Furthermore the lack of ICU beds, among many other factors, have contributed to a prolonged length of stay (LOS) of already admitted patients known as “ED Boarding”. Another factor to consider, is that providing prolonged critical care in a traditional ED setting is challenging as it requires more staff and is often associated with increased mortality. Multiple studies have demonstrated an association of worsened outcomes when patient’s ED LOS is greater than 6 hours and, in the United States, 33% of all ICU admissions from the ED have an ED LOS greater than 6 hours.1,4 A proposed solution has been the development of ICUs housed within the ED known as ED-ICUs. While only a handful exist, this new method of care delivery aims to reduce the time it takes for patients to receive critical care and offset the strain on current ICUs (Table 1)4. The authors of this study sought to determine the association of ED-ICUs on 30-day mortality and inpatient ICU admission.

August 5, 2019

Background Information: Non-steroidal Inflammatory drugs (NSAIDs) such as Ibuprofen are of the one of the most commonly used oral analgesics in the emergency department. 1 These medications work by inhibiting the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). These are two enzymes which lead to prostaglandin production and ultimately promote pain, fever and inflammation. Prostaglandins also serve to line the stomach epithelium and protect it from the digestive acids. The COX-1 enzyme also plays a role in platelet activation through the production of Thrombaxane-2. Understanding the physiology behind these important enzymes helps us better anticipate the expected adverse effects that may occur when prescribing NSAIDs, especially at higher doses or over an extended period of time. Due to its linear kinetic effects, higher doses of ibuprofen results in longer duration of analgesia and not necessarily more effective pain control. 3, 4 The authors of this study sought to identify the analgesic effects of three different doses of ibuprofen. Furthermore, they hypothesized that a lower dose had comparable analgesic effects when compared to higher doses.