November 12, 2018

In October 2016, I was exposed to the vast world of Free Open Access Medical Education and MedTwitter. I was astounded and inspired by the different educators who were trying to make learning easier. The Knowledge Translation (KT) gap was being vastly shortened by some very smart people who took to social media to educate the rest of the world. Although there were knowledge bombs in all areas of medicine, I was particularly drawn to the ones most relevant to emergency medicine and critical care.

Each day in 2017, I used Twitter to share a few pearls with the world as my contribution to #FOAMed. I included the hashtag #TodayILearned (Today I Learned) so I could keep track of them to use for future projects. Here are just a few of those pearls:

March 24, 2016

Post Written By: Sam Ghali (Twitter: @EM_RESUS)

In cardiac arrest care there has been a lot of focus over the years on limiting interruptions in chest compressions during CPR. In fact, this concept has become a major focus of the current AHA Guidelines. Why? Because we know interruptions are bad [1,2]. One particular aspect of CPR that has gotten a lot of attention in this regard is the peri-shock period. It has been well established that longer pre- and peri-shock pauses are independently associated with decreased chance of survival [3,4].

January 21, 2016

One of the major reasons contributing to dismal survival rates in out-of-hospital cardiac arrest (OHCA) is the lack of bystander initiated cardiopulmonary resuscitation (CPR). Even though the majority of OHCA is witnessed, only 1 in 5 patients will receive bystander initiated CPR [1].  Survey studies have shown that bystanders are not wanting to do mouth-to-mouth resuscitation on strangers. Outside of early defibrillation, only early bystander initiated CPR has consistently been shown to improve neurologically intact survival in OHCA. So what about  Cardiocerebral Resuscitation, also known as "Hands-Only" CPR?

December 10, 2015

Welcome to the December 2015 REBELCast, where Swami, Matt, and I are going to tackle a couple of topics in the world of Cardiology and Critical Care. First of all, we all know that the optimal treatment for STEMI is getting the patient to the cardiac catheterization lab, and time is muscle, but does it help to get patients to the catheterization lab even faster than 90 minutes? Or does speeding up the time have bad outcomes? Secondly, it has been drilled into our heads that high-quality CPR with minimal to no interruptions is key in OHCA.  This gives our patients the best chance of neurologically intact survival.  But a new study just published might beg to differ. So with that introduction today we are going to specifically tackle:

Topic #1: Reducing Door to Balloon (D2B) Times to <90 Minutes in STEMI Topic #2: Continuous vs Interrupted CPR in OHCA

October 26, 2015

Background: In cardiac arrest, high quality, uninterrupted CPR is essential to help improve survival rates. In theory, mechanical CPR should provide CPR at a standard depth and rate for prolonged periods without a decline in quality, which should help improve survival and survival with good neurologic outcomes. There are many types of mechanical chest compression devices but the two main technologies can be generalized as piston devices and load-distributing bands. The piston driven devices work by compressing on the chest in an up and down type of motion, similar to how we do manual CPR. The load distributing bands wrap all the way around the chest and shorten and lengthen which provides more of a rhythmic type of chest compression. No individual trials have ever shown superiority on clinically important outcomes for adult patients with OHCA, regardless of device.
0