November 26, 2020

Background: We have covered tranexamic acid (TXA) on this blog in several posts. Its use has been studied for everything that bleeds from abnormal uterine bleeding to GI hemorrhage and from multisystem trauma to intracranial hemorrhage. While over the past few years it has been touted as the wonderdrug for bleeding, newer research is beginning to challenge that thought (CRASH-3 trial, HALT-IT trial, etc.). The CRASH-2 trial showed that early administration of TXA (within 3 hours) to trauma patients improved all-cause mortality. However, obtaining rapid IV access in low resource, rural, or combat settings can be challenging. Only recently has research been conducted about intramuscular administration of TXA. Actually…we should really say that there has been a resurgence of interest in IM TXA. There were a couple studies published about its pharmacokinetics and pharmacodynamics in the 1970s and 80s, followed by radio silence on the subject.1,2 Curiosity about the drug has picked back up over the past decade as its cost dropped and access to TXA increased exponentially. In fact, finding alternative routes of TXA administration in postpartum hemorrhage is a WHO priority.3 Today, we will review a recent article that explored the pharmacokinetics of intramuscular TXA in bleeding trauma patients.

October 26, 2020

Orbital compartment syndrome (OCS) is a rare, vision-threatening diagnosis that requires rapid identification and immediate treatment for preservation of vision.1-4 As with other compartment syndromes, rapidly increasing and sustained high intraocular pressures (IOP) can result in devastating consequences. OCS causes retinal and optic nerve ischemia due to increased pressure on those structures. Due to the time-sensitive nature of this condition, the emergency physician (EP) plays a critical role in the diagnosis and management of OCS.5 The definitive therapy for this condition is lateral canthotomy and inferior cantholysis (LCIC).
0