Basics of Shock

Educational Reinforcement Material

Table of Contents

Pre-Test Questions Page 3
Manual (blanks), Page 5
Post- Test Questions Page 8
Pre-Test Questions with answers Page 10
Post- Test Questions with answers Page 12

Pre-Test Questions

- 1. What is the definition of shock?
 - a. Systolic blood pressure < 65 mm Hg
 - b. Lactic acid production due to anaerobic metabolism
 - c. Metabolic supply to tissues does not meet demand
 - d. When you are scared of something
- 2. What are the two pathways that pyruvate can take?
 - a. Krebs cycle or gluconeogenesis
 - b. Lactate production or glycolysis
 - c. Krebs cycle or lactate production
 - d. Lactate production or gluconeogenesis
- 3. Why does shock have increased lactic acid production (besides anaerobic metabolism)?
 - a. Epinephrine activation of beta 2 receptors
 - b. All of it is from anaerobic metabolism from tissue ischemia
 - c. Epinephrine activation of alpha 2 receptors
 - d. Decreased clearance so no increased production
- 4. How is lactate cleared?
 - a. It is metabolized by the brain
 - b. Cleared by kidneys and liver
 - c. It is changed back into pyruvate to go into the Krebs cycle
 - d. Hoffman degradation
- 5. Cold shock is defined by ...?
 - a. Decreased effective intravascular volume
 - b. Increased systemic vascular resistance
 - c. Decreased or inadequate stroke volume
 - d. Vasoconstriction (both venous and arterial)
- 6. Warm shock is defined by...?
 - a. Decreased afterload
 - b. Increased preload
 - c. Narrow pulse pressure
 - d. Decreased systemic vascular resistance
- 7. What are the components of stroke volume?
 - a. Preload, afterload, and heart rate
 - b. Preload, contractility, and systemic vascular resistance
 - c. Preload, afterload and contractility
 - d. Afterload and contractility
- 8. Which one does not cause a decrease in preload?
 - a. Hemorrhage
 - b. Myocarditis
 - c. GI bleed
 - d. Vasodilation
- 9. Which one does not cause a decrease in contractility?
 - a. Aortic stenosis
 - b. Cardiac ischemia
 - c. Myocarditis
 - d. Congenital heart disease
- 10. Which one does not cause increased afterload?
 - a. Hypertensive emergency
 - b. Left Ventricular outflow obstruction
 - c. Increased vasodilation
 - d. Aortic stenosis
- 11. What correlates with systolic blood pressure?
 - a. Cardiac output
 - b. End diastolic volume

- c. Stroke volume
- d. Peripheral vascular resistance
- 12. What correlates with diastolic blood pressure?
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume
 - d. Peripheral vascular resistance
- 13. What is the first compensation for a decrease in stroke volume to maintain cardiac output?
 - a. Increase heart rate
 - b. Increase peripheral vascular resistance
 - c. Epinephrine
 - d. Decreased urine output
- 14. What is the next step if an increase in heart rate is inadequate to maintain cardiac output?
 - a. More increased heart rate
 - b. Decreased urine output
 - c. Increase systemic vascular resistance
 - d. Increased contractility
- 15. What is cold shock?
 - a. Decrease in cardiac output
 - b. Increased in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading to increased systemic vascular resistance
- 16. What happens to the pulse pressure in cold shock?
 - a. Increases
 - b. Stays the same
 - c. Decreases
 - d. Depends on the cause of cold shock
- 17. What are the three types of cold shock?
 - a. Cardiogenic, hypovolemic, obstructive
 - b. Hypovolemic, septic, neurogenic
 - c. Cardiogenic, obstructive, neurogenic
 - d. Hypovolemic, neurogenic, septic
- 18. What type of shock is tamponade?
 - a. Cardiogenic
 - b. Obstructive
 - c. Hypovolemic
- 19. What is warm shock?
 - a. Decrease in cardiac output
 - b. Increase in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading with decreased systemic vascular resistance
- 20. What happens to the pulse pressure in warm shock?
 - a. Increases
 - b. Stays the same
 - c. Decreases
- 21. What is another name of warm shock?
 - a. Distributive shock
 - b. Sepsis
 - c. Hypovolemic
- 22. What type of distributive shock has bradycardia?
 - a. Septic
 - b. Obstructive
 - c. Neurogenic
 - d. Cardiogenic

Manuel with Blanks

Shock 0045

When supply does not meet demand

The metabolic supply to tissue, and thereby organ systems, does not meet the demand

It is NOT defined by a blood pressure

_____ metabolism: Less efficient energy production, lactate production

Lactate Production 0250

Glycolysis and Pyruvate

Krebs cycle

Lactate production in normal circumstances is due to ______ oxygen supply

Lactate production in shock is due to ______ stimulation of the ______ by epinephrine leading to increased ______

Lactate production as energy source

Normally always have low levels of lactate production that is cleared by the kidneys and the liver

Causes of Hyperlactermia

- × Liver Disease
- × Accelerated glycolysis (increased metabolism): fever, adrenalin, hyperthyroidism, albuterol use
- × Mitochondrial dysfunction (Inborn errors of metabolism)
- × Thiamine deficiency (malnutrition, chronic alcoholism)
- × Anaerobic metabolism (ischemic gut)
- × Carbon monoxide and cyanide toxicity: alter oxidative phosphorylation
- × Metformin
- × Hyperventilation (alkalemia)
- × Sepsis (multifactorial)

Categories of shock 0638

Cold shock 0710

- × _____ stroke volume
- × _____ preload, contractility
- × _____ afterload
- x _____ pulse pressure due to compensatory _____ and _____ in systemic vascular resistance

Warm shock

- × _____ systemic vascular resistance
- \times Movement of blood flow from vital organs to non-vital organs (e.g. skin and muscles)
- × _____ pulse pressure due to the _____ systemic vascular resistance

Stroke Volume 0829

× The amount of blood pumped out of the heart with each heartbeat

Preload:

- × The volume of blood present in the ventricle at _____
- × Causes for ______ in preload hypovolemia, hemorrhage or vasodilation

Contractility:

- × The strength of _____
- × Causes for _____ contractility- ischemia, toxins, myocarditis, congenital heart disease

Afterload:

- × _____ against the ventricular contraction
- × Causes for ______ afterload- hypertensive emergency, increased vasocontraction

Defining Blood Pressures 0947

Systolic Blood pressure

- × Determined by the blood volume in the arteries + aortic compliance
- × Systolic Blood Pressure ~ _____

Diastolic Blood Pressure

- × As the ventricle is relaxing, tissue perfusion determined by systemic vascular resistance
- × Diastolic Blood Pressure ~ _____

Chronically low diastolic blood pressure, therefore an increased pulse pressure, could be associated with aortic regurgitation

Compensation for Shock 1150

_____ stroke volume->. Low cardiac output state and decreased tissue perfusion

- 1. Increase heart rate
- 2. Increase systemic vascular resistance (if heart rate is inadequate)

Determinates of vascular tone

- × _____: catecholamines that cause vasoconstriction
- × _____: (+) RAAS -> angiotensin II and aldosterone release

Categories of shock 1424

Cold shock:

Decrease stroke volume (i.e. decreased SBP) + increased systemic vascular resistance (i.e. increased DBP)=> narrow pulse pressure

Cardiogenic shock:

- × Trouble with ___
- × Examples: ischemia, congenital heart disease, toxins
- Note: increasing the systemic vascular resistance will increase the _____, thereby making it worse by further decreasing the stroke volume

Hypovolemic shock:

× Trouble with _____

× Examples: hemorrhage, gastrointestinal losses, venodilation (most of the blood volume is in the venous vasculature) leading to relative hypovolemia

Obstructive shock (SICK):

- × Mechanism: Decreased _____/ increased _____; normal _____;
- Examples: Massive pulmonary embolism, cardiac tamponade, tension pneumothorax, HTN crisis, aortic dissection, restrictive/ constrictive pericarditis, very high positive end expiratory pressure (PEEP), abdominal compartment syndrome

Warm shock:

Distributive shock (meaning the problem is the "distribution" of blood flow)= ______ stroke volume (i.e. decreased SBP) << ______ systemic vascular resistance (i.e. decreased DBP)=> ______ pulse pressure

1. ______ - Increase in venous capacitance leading to blood pooling in the venous system

____, ____

- 2. Increased capillary permeability leading to loss of plasma volume into the interstitial space (so has a component of hypovolemic shock)
- 3. Increased heart rate + increased contractility(compensation)
- × Sepsis, _____, ____,
 - Sepsis myocardial dysfunction due to cytokine release

Decreased/ normal heart rate

× _____ shock (unopposed vagal tone)

Post Test Questions

- 1. What happens to the pulse pressure in cold shock?
 - a. Increases
 - b. Stays the same
 - c. Decreases
 - d. Depends on the cause of cold shock
- 2. What are the components of stroke volume?
 - a. Preload, afterload, and heart rate
 - b. Preload, contractility, and systemic vascular resistance
 - c. Preload, afterload and contractility
 - d. Afterload and contractility
- 3. What is the definition of shock?
 - a. Systolic blood pressure < 65 mm Hg
 - b. Lactic acid production due to anaerobic metabolism
 - c. Metabolic supply to tissues does not meet demandd. When you are scared of something
- 4. What is warm shock?
 - a. Decrease in cardiac output
 - b. Increase in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading with decreased systemic vascular resistance
- 5. How is lactate cleared?
 - a. It is metabolized by the brain
 - b. Cleared by kidneys and liver
 - c. It is changed back into pyruvate to go into the Krebs cycle
 - d. Hoffman degradation
- 6. Cold shock is defined by ...?
 - a. Decreased effective intravascular volume
 - b. Increased systemic vascular resistance
 - c. Decreased or inadequate stroke volume
 - d. Vasoconstriction (both venous and arterial)
- 7. What is the next step if an increase in heart rate is inadequate to maintain cardiac output?
 - a. More increased heart rate
 - b. Decreased urine output
 - c. Increase systemic vascular resistance
 - d. Increased contractility
- 8. Warm shock is defined by ... ?
 - a. Decreased afterload
 - b. Increased preload
 - c. Narrow pulse pressure
 - d. Decreased systemic vascular resistance
- 9. What are the two pathways that pyruvate can take?
 - a. Krebs cycle or gluconeogenesis
 - b. Lactate production or glycolysis
 - c. Krebs cycle or lactate production
 - d. Lactate production or gluconeogenesis
- 10. Which one does not cause increased afterload?
 - a. Hypertensive emergency
 - b. Left Ventricular outflow obstruction
 - c. Increased vasodilation
 - d. Aortic stenosis
- 11. What correlates with systolic blood pressure?
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume

- d. Peripheral vascular resistance
- 12. What correlates with diastolic blood pressure?
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume
 - d. Peripheral vascular resistance
- 13. Which one does not cause a decrease in preload?
 - a. Hemorrhage
 - b. Myocarditis
 - c. GI bleed
 - d. Vasodilation
- 14. What is the first compensation for a decrease in stroke volume to maintain cardiac output?
 - a. Increase heart rate
 - b. Increase peripheral vascular resistance
 - c. Epinephrine
 - d. Decreased urine output
- 15. What type of shock is tamponade?
 - a. Cardiogenic
 - b. Obstructive
 - c. Hypovolemic
- 16. What is cold shock?
 - a. Decrease in cardiac output
 - b. Increased in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading to increased systemic vascular resistance
- 17. Which one does not cause a decrease in contractility?
 - a. Aortic stenosis
 - b. Cardiac ischemia
 - c. Myocarditis
 - d. Congenital heart disease
- 18. What type of distributive shock has bradycardia?
 - a. Septic
 - b. Obstructive
 - c. Neurogenic
 - d. Cardiogenic
- 19. What are the three types of cold shock?
 - a. Cardiogenic, hypovolemic, obstructive
 - b. Hypovolemic, septic, neurogenic
 - c. Cardiogenic, obstructive, neurogenic
 - d. Hypovolemic, neurogenic, septic
- 20. Why does shock have increased lactic acid production (besides anaerobic metabolism)?
 - a. Epinephrine activation of beta 2 receptors
 - b. All of it is from anaerobic metabolism from tissue ischemia
 - c. Epinephrine activation of alpha 2 receptors
 - d. Decreased clearance so no increased production
- 21. What happens to the pulse pressure in warm shock?
 - a. Increases
 - b. Stays the same
 - c. Decreases
- 22. What is another name of warm shock?
 - a. Distributive shock
 - b. Sepsis
 - c. Hypovolemic

Pre- Test Questions and Answers

- 1. What is the definition of shock? 0445
 - a. Systolic blood pressure < 65 mm Hg
 - b. Lactic acid production due to anaerobic metabolism
 - c. Metabolic supply to tissues does not meet demand
 - d. When you are scared of something
- 2. What are the two pathways that pyruvate can take? 0310
 - a. Krebs cycle or gluconeogenesis
 - b. Lactate production or glycolysis
 - c. Krebs cycle or lactate production
 - d. Lactate production or gluconeogenesis
- 3. Why does shock have increased lactic acid production (besides anaerobic metabolism)? 0410
 - a. Epinephrine activation of beta 2 receptors
 - b. All of it is from anaerobic metabolism from tissue ischemia
 - c. Epinephrine activation of alpha 2 receptors
 - d. Decreased clearance so no increased production
- 4. How is lactate cleared? 0540
 - a. It is metabolized by the brain
 - b. Cleared by kidneys and liver
 - c. It is changed back into pyruvate to go into the Krebs cycle
 - d. Hoffman degradation
- 5. Cold shock is defined by...? 0710
 - a. Decreased effective intravascular volume
 - b. Increased systemic vascular resistance
 - c. Decreased or inadequate stroke volume
 - d. Vasoconstriction (both venous and arterial)
- 6. Warm shock is defined by... ? 0742
 - a. Decreased afterload
 - b. Increased preload
 - c. Narrow pulse pressure
 - d. Decreased systemic vascular resistance
- 7. What are the components of stroke volume? 0829
 - a. Preload, afterload, and heart rate
 - b. Preload, contractility, and systemic vascular resistance
 - c. Preload, afterload and contractility
 - d. Afterload and contractility
- 8. Which one does not cause a decrease in preload? 0844
 - a. Hemorrhage
 - b. Myocarditis
 - c. Gi bleed
 - d. Vasodilation
- 9. Which one does not cause a decrease in contractility? 0905
 - a. Aortic stenosis
 - b. Cardiac ischemia
 - c. Myocarditis
 - d. Congenital heart disease
- 10. Which one does not cause increased afterload? 0927
 - a. Hypertensive emergency
 - b. Left Ventricular outflow obstruction
 - c. Increased vasodilation
 - d. Aortic stenosis
- 11. What correlates with systolic blood pressure? 0954
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume

- d. Peripheral vascular resistance
- 12. What correlates with diastolic blood pressure? 1039
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume
 - d. Peripheral vascular resistance
- 13. What is the first compensation for a decrease in stroke volume to maintain cardiac output? 1223
 - a. Increase heart rate
 - b. Increase peripheral vascular resistance
 - c. Epinephrine
 - d. Decreased urine output
- 14. What is the next step if an increase in heart rate is inadequate to maintain cardiac output? 1234
 - a. More increased heart rate
 - b. Decreased urine output
 - c. Increase systemic vascular resistance
 - d. Increased contractility
- 15. What is cold shock? 1448
 - a. Decrease in cardiac output
 - b. Increased in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading to increased systemic vascular resistance
- 16. What happens to the pulse pressure in cold shock? 1448
 - a. Increases
 - b. Stays the same
 - c. Decreases
 - d. Depends on the cause of cold shock
- 17. What are the three types of cold shock? 1519, 1615, 1850
 - a. Cardiogenic, hypovolemic, obstructive
 - b. Hypovolemic, septic, neurogenic
 - c. Cardiogenic, obstructive, neurogenicd. Hypovolemic, neurogenic, septic
- 18. What type of shock is tamponade? 1850
 - a. Cardiogenic
 - b. Obstructive
 - c. Hypovolemic
- 19. What is warm shock? 2125
 - a. Decrease in cardiac output
 - b. Increase in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading with decreased systemic vascular resistance
- 20. What happens to the pulse pressure in warm shock? 2125
 - a. Increases
 - b. Stays the same
 - c. Decreases
- 21. What is another name of warm shock? 2125
 - a. Distributive shock
 - b. Sepsis
 - c. Hypovolemic
- 22. What type of distributive shock has bradycardia? 2602
 - a. Septic
 - b. Obstructive
 - c. Neurogenic
 - d. Cardiogenic

Post Test Questions and Answers

- 1. What happens to the pulse pressure in cold shock? 1448
 - a. Increases
 - b. Stays the same
 - c. Decreases
 - d. Depends on the cause of cold shock
- 2. What are the components of stroke volume? 0829
 - a. Preload, afterload, and heart rate
 - b. Preload, contractility, and systemic vascular resistance
 - c. Preload, afterload and contractility
 - d. Afterload and contractility
- 3. What is the definition of shock? 0445
 - a. Systolic blood pressure < 65 mm Hg
 - b. Lactic acid production due to anaerobic metabolism
 - c. Metabolic supply to tissues does not meet demand
 - d. When you are scared of something
- 4. What is warm shock? 2125
 - a. Decrease in cardiac output
 - b. Increase in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading with decreased systemic vascular resistance
- 5. How is lactate cleared? 0540
 - a. It is metabolized by the brain
 - b. Cleared by kidneys and liver
 - c. It is changed back into pyruvate to go into the Krebs cycle
 - d. Hoffman degradation
- 6. Cold shock is defined by...? 0710
 - a. Decreased effective intravascular volume
 - b. Increased systemic vascular resistance
 - c. Decreased or inadequate stroke volume
 - d. Vasoconstriction (both venous and arterial)
- 7. What is the next step if an increase in heart rate is inadequate to maintain cardiac output? 1234
 - a. More increased heart rate
 - b. Decreased urine output
 - c. Increase systemic vascular resistance
 - d. Increased contractility
- 8. Warm shock is defined by...? 0742
 - a. Decreased afterload
 - b. Increased preload
 - c. Narrow pulse pressure
 - d. Decreased systemic vascular resistance
- 9. What are the two pathways that pyruvate can take? 0310
 - a. Krebs cycle or gluconeogenesis
 - b. Lactate production or glycolysis
 - c. Krebs cycle or lactate production
 - d. Lactate production or gluconeogenesis
- 10. Which one does not cause increased afterload? 0927
 - a. Hypertensive emergency
 - b. Left Ventricular outflow obstruction
 - c. Increased vasodilation
 - d. Aortic stenosis
- 11. What correlates with systolic blood pressure? 0954
 - a. Cardiac output
 - b. End diastolic volume

- c. Stroke volume
- d. Peripheral vascular resistance
- 12. What correlates with diastolic blood pressure? 1039
 - a. Cardiac output
 - b. End diastolic volume
 - c. Stroke volume
 - d. Peripheral vascular resistance
- 13. Which one does not cause a decrease in preload? 0844
 - a. Hemorrhage
 - b. Myocarditis
 - c. Gl bleed
 - d. Vasodilation
- 14. What is the first compensation for a decrease in stroke volume to maintain cardiac output? 1223
 - a. Increase heart rate
 b. Increase peripheral vascular resistance
 - c. Epinephrine
 - d. Decreased urine output
- 15. What type of shock is tamponade? 1850
 - a. Cardiogenic
 - b. Obstructive
 - c. Hypovolemic
- 16. What is cold shock? 1448
 - a. Decrease in cardiac output
 - b. Increased in systemic vascular resistance leading to bradycardia
 - c. Increase in afterload
 - d. Decrease in stroke volume leading to increased systemic vascular resistance
- 17. Which one does not cause a decrease in contractility? 0905
 - a. Aortic stenosis
 - b. Cardiac ischemia
 - c. Myocarditis
 - d. Congenital heart disease
- 18. What type of distributive shock has bradycardia? 2602
 - a. Septic
 - b. Obstructive
 - c. Neurogenic
 - d. Cardiogenic
- 19. What are the three types of cold shock? 1519, 1615. 1850
 - a. Cardiogenic, hypovolemic, obstructive
 - b. Hypovolemic, septic, neurogenic
 - c. Cardiogenic, obstructive, neurogenic
 - d. Hypovolemic, neurogenic, septic
- 20. Why does shock have increased lactic acid production (besides anaerobic metabolism)? 0410
 - a. Epinephrine activation of beta 2 receptors
 - b. All of it is from anaerobic metabolism from tissue ischemia
 - c. Epinephrine activation of alpha 2 receptors
 - d. Decreased clearance so no increased production
- 21. What happens to the pulse pressure in warm shock? 2125
 - a. Increases
 - b. Stays the same
 - c. Decreases
- 22. What is another name of warm shock? 2125
 - a. Distributive shock
 - b. Sepsis
 - c. Hypovolemic